Page 1

3GPP TSG-SA WG3 Meeting #93
S3-183540
Spokane (US), 12-16 November 2018
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	33.501
	CR
	0467
	rev
	-
	Current version:
	15.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	x

	

	Title:

	Editorial corrections in 13.2

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	S3

	
	

	Work item code:
	5GS_Ph1-Sec
	
	Date:
	2018-11-02

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	Editorial corrections in section 13.2

	
	

	Summary of change:
	Clause numbers are fixed

	
	

	Consequences if not approved:
	Incorrect specification

	
	

	Clauses affected:
	13.2

	
	

	
	Y
	N
	
	

	Other specs
	
	x
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	x
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	x
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

*** First Change ***
13.2
Application layer security on the N32 interface

Editor's Note: This sub-clause is to include solutions satisfying the requirements on e2e security in clause 5.6. It is ffs whether the work performed by GSMA FASG DESS on e2e security for selected DIAMETER AVPs can be somehow utilized here. It is to also take into account solutions 10.1 and 10.2 in clause 5.10.4 of TR 33.899. When the solution(s) involve a Public Key Infrastructure then details of the use of the PKI are to be provided, e.g. by reference to TS 33.310.
13.2.1
General

The internetwork interconnect allows secure communication between service-consuming and a service-producing NFs in different PLMNs. Security is enabled by the Security Edge Protection Proxies of both networks, henceforth called cSEPP and pSEPP respectively. The SEPPs enforce protection policies regarding application layer security thereby ensuring integrity and confidentiality protection for those elements to be protected.

It is assumed that there are interconnect providers between cSEPP and pSEPP. The interconnect provider the cSEPP's operator has a business relationship with is called cIPX, while the interconnect provider the pSEPP's operator has a business relationship with is called pIPX. There could be further interconnect providers in between cIPX and pIPX, but they are assumed to be transparent and simply forward the communication.

A NF on the consumer side sends a message to a NF on the producer side. If this communication is across PLMN operators, as shown in Figure 13.2.1-1 below, the cSEPP receives the message and applies application layer protection, as defined in the present specification. The pIPX and cIPX can offer services that require modifications of the messages transported over the interconnect interface. These modifications are appended to the message and reflect the desired changes. The pSEPP, which receives the message, validates the message, extracts the original message and applies the patches by intermediaries. The pSEPP then forwards the message to the destination NF if the validations succeed.
The N32 interface consists of

-
N32-c connection, for management of the N32 interface, and

-
N32-f connection, for sending of JOSE protected messages between the SEPPs.

[image: image1.emf]cSEPPpSEPPpIPXcIPXNFNFCleartext IEsEncrypted IEs (JWE)MetadataJSON patchIPXIdJWS SignatureJSON patchIPXIdJWS SignatureCleartext IEsEncrypted IEs (JWE)MetadataHTTP/2 RequestHTTP/2 RequestN32-cN32-fJWEJWSJWSPublic key cIPXPublic key pIPXJSON Patch modification(s)JSON Patch modification(s)Symmetric key ASymmetric key APrivate keycIPXPrivate keypIPX

Figure 13.2.1-1: Overview of N32 Application Layer Security

13.2.2
N32-c connection between SEPPs

13.2.2.1
General

When the SEPPs have mutually authenticated each other and when the negotiated the security mechanism to use over N32 is Application Layer Security, the SEPPs use the established TLS connection (N32-c connection) to negotiate the N32 specific associated security configuration parameters.

The N32-c connection is used for the following:

-
Key agreement: The SEPPs independently export keying material associated with the established N32-c connection between them and use it as the pre-shared key for generating the shared session key required. This is based on RFC 5705 [61] for TLS 1.2. For TLS 1.3, the exporter described in section 7.5 of [60] is used.

-
Parameter exchange: The SEPPs exchange security related configuration parameters that are needed by the SEPPs to protect HTTP messages exchanged between the two Network Functions (NF) in their respective networks.

-
Error handling: The receiving SEPP sends an error signalling message to the peer SEPP when it detects error on the N32 interface.

The following security related configuration parameters may be exchanged between the two SEPPs:

a. Modification policy – Modification policy, as specified in clause 13.2.3.4, indicates which IEs can be modified by an IPX provider of the sending SEPP.

b. Cipher suites for confidentiality and integrity protection when Application layer security is used to protect HTTP messages between them.

c. N32-f precontext identifier values, that’s used by each SEPP to identify the set of security related configuration parameters, when it receives a protected message from a SEPP in a different PLMN.

Editor’s Note: Whether supported confidentiality protection and integrity protection methods need to be negotiated is FFS.

13.2.2.2
Procedure for Key agreement and Parameter exchange

1. The two SEPPs perform a cipher suite negotiation to agree on a cipher suite to use for protecting NF service related signalling over N32-f.

1a. The SEPP which initiated the TLS connection sends a Parameter Exchange Request message to the responding SEPP including the initiating SEPP’s supported cipher suites. The cipher suites are ordered in initiating SEPP’s priority order. The SEPP provides a N32-f precontext ID for the responding SEPP. The precontext IDs are 32-bit random integers, represented as 0-left padded strings of hexadecimal digits
1b. The responding SEPP compares the received cipher suites to its own supported cipher suites and selects, based on its local policy, a suite, which is supported by both initiating SEPP and responding SEPP.
1c. The responding SEPP sends a Parameter Exchange Response message to the initiating SEPP including the selected cipher suite for protecting the NF service related signalling over N32. The responding SEPP provides a N32-f precontext ID for the initiating SEPP.

1d. The SEPPs create the N32-f context ID as follows:

Initiating SEPP’s N32-f precontext ID | responding SEPP’s N32-f precontext ID

2. The two SEPPs may perform exchange of Data-type encryption policies and Modification policies. Both SEPPs shall store the protection policies sent by peer SEPP:

2a. The SEPP, which initiated the TLS connection, sends a Parameter Exchange Request message to the responding SEPP including the initiating SEPP’s protection policies listed in clause 13.2.3.

2b. The responding SEPP shall store the policies if sent by the initiating SEPP.
2c. The responding SEPP sends a Parameter Negotiation Response message to the initiating SEPP with the selected values for the parameters sent in step 5a and responding SEPP’s suite of protection policies.

2d. The initiating SEPP shall store the protection policy information if sent by the responding SEPP,

3. The two SEPPs shall exchange IPX security information lists which contain public key or certificates of the IPX providers connected to the SEPPs.

4. The two SEPPs export keying material from the TLS session established between them using the TLS export function as specified in RFC 5705 [61] for TLS 1.2. For TLS 1.3, the exporter described in section 7.5 of [60] is used. The exported key shall be used as the master key to derive session keys and IVs for the N32-f context as specified in clause 13.2.4.4.1.

5. The two SEPPs start exchanging NF to NF service related signalling over N32-f and keep the TLS session open for:

-
any further N32-c communication that may occur over time while application layer security is applied to N32-f, or
-
any further N32-c and N32-f communication, if TLS is used to protect N32-f.

Editor’s Note: The exact message names are FFS.
13.2.2.3
Procedure for Error detection and handling in SEPP

Errors can occur on an active N32-c connection or on one or more N32-f connections between two SEPPs.

When an error is detected, the SEPP shall map the error to an appropriate cause code. A signalling message is created to inform the peer SEPP, with cause code as one of its parameters.

The N32-c connection shall be used to send the signalling message to the peer SEPP.

If the error occurred in the processing of the one or more N32-f message(s), the corresponding Message Id (s), included in the metadata section of the N32-f message, shall be included as a parameter in the signalling message. This allows the peer SEPP to identify the source message (HTTP Request or Response) on which the error was found in the other SEPP.

NOTE:
Local action taken by either SEPP is out of 3GPP scope.
13.2.2.4
N32-f Context

13.2.2.4.0
N32-f parts

The N32-f context consists of the following main parts also illustrated in Figure 13.2.2.4.0-1:
1.
N32-f context ID

2.
N32-f peer information

3.
N32-f security context

4.
N32-f context information

[image: image2.emf]N32-f contextN32-f context IDN32-f peer informationN32-f security contextN32-f context informationRemote PLMN IDRemote SEPP IDRemote SEPP addressSession keysCipher-suitesCountersValidityUsage (ALS)Modification policy IDsIVs

Figure 13.2.2.4.0-1: N32-f context overview
13.2.2.4.1
N32-f context ID

The N32-f context ID is used to refer to an N32-f context. The N32-f context ID is created during the N32-c negotiation and used over N32-f to inform the reveiving peer which security context to use for decryption of a received message.

To avoid collision of the N32-f context ID value, the ID shall be selected as a random value during the exchange over N32-c.

During transfer of application data over N32-f, the N32-f context ID shall be contained in a separate IE in the payload part of the JSON structure, see clause 13.2.4.2.1. The receiving part shall use this information to apply the correct key and parameters during decryption and validation.

13.2.2.4.2
N32-f peer information

The N32 "connection" between SEPPs is bidirectional and consists of the two SEPP endpoints and possibly up to two IPX providers. The SEPPs are identified by the PLMN ID and additionally a SEPP ID to distinguish between several SEPPs in the same PLMN. The remote SEPP address is necessary for routing the messages to the correct destination. The N32 peer information consists of the following parameters:

-
Remote PLMN ID;

-
Remote SEPP ID;

-
Remote SEPP address.

13.2.2.4.3
N32-f security context

The N32-c initial handshake establishes session keys, IVs and negotiated cipher suites. Counters are used for replay protection. Modification policies are identified by modification policy IDs, to be able to verify received messages that have undergone IPX modifications. The N32 security context consists of the following parameters:

-
Session keys

-
Negotiated cipher suites

-
Modification Policy IDs (if IPXs are used)

-
Counters

-
IVs

-
List of security information of the IPX providers connected to the SEPPs (IPX security information list)

-
IPX provider identifier

-
List of raw public keys or certificates for that IPX
13.2.2.4.4
N32-f context information

The N32 context information consists of the following parameters:

-
Validity

-
Usage (application layer solution)
13.2.3
Protection policies for N32 application layer solution

13.2.3.1
Overview of protection policies
The protection policy suite is comprised of a data-type encryption policy and a modification policy. Together, these policies determine which part of a certain message shall be integrity protected, which part of a certain message shall be confidentiality protected, and which part of a certain message shall be modifiable by IPX providers. For application layer protection of messages on the N32 interface, the SEPP shall apply message protection policies.

There are two protection policies, namely:

-
Data-type encryption policy that specifies which data types need to be confidentiality protected;

-
A modification policy that specifies which IEs are modifiable by intermediaries

In addition, there is a mapping between the data-types in the data-type encryption policy and the IEs in NF API descriptions which is given in a NF-API data-type placement mapping.

13.2.3.2
Data-type encryption policy

The SEPP shall contain an operator controlled protection policy that specifies which types of data shall be encrypted. The data-types defined at this moment are the following:

-
Data of the type 'SUPI'

-
Data of the type 'location data'

-
Data of the type 'key material'

-
Data of the type 'authorization token'

This policy shall be on a per roaming partner basis.

The policy shall contain an identifier that identifies the policy and a release number referring to the release it is applicable for.

The Data-type encryption policies in the two partner SEPPs shall be equal in order to enforce a consistent ciphering of IEs on N32.

13.2.3.3
NF API data-type placement mapping

Each NF API data-type placement mapping shall contain the following:

-
Which IEs contain data of the type 'IMSI' or type 'NAI'.

-
Which IEs contain data of the type 'location data'.

-
Which IEs contain data of the type 'key material'.

-
Which IEs contain data of the type 'authorization token'.

Where the location of the IEs refers to the location of the IEs after the SEPP has rewritten the message for transmission over N32.

An NF API data-type placement mapping shall furthermore contain data that identifies the NF API, namely
-
The name of the NF;

-
The version;

-
An identifier;

-
The release version.
NOTE:
Larger networks can contain multiple NFs with the same API, e.g. three AMFs. The NF API policy applies to all NFs with the same API.

The NF API data-type placement mapping resides in the SEPP.

13.2.3.4
Modification policy

The SEPP shall contain an operator-controlled policy that specifies which IEs can be modified by the IPX provider directly related to this particular SEPP. These IEs refer to the IEs after the sending SEPP has rewritten the message.

Each PLMN-operator shall agree the modification policy with the IPX provider it has a business relationship with prior to establishment of an N32 connection. Each modification policy applies to one individual relation between PLMN-operator and IPX provider. In order to cover the complete N32 connection both involved roaming partners exchange their modification policies. Both complementary modification policies comprise the overall modification policy for this specific N32 connection.

NOTE 1:
In order to validate modifications for messages received on the N32 interface, the operator’s roaming partners will have to know the overall modification policy.
NOTE 2: Modification includes removal and addition of new IE. IEs therefore may not be present in the rewritten message.

The IEs that the IPX is allowed to modify are specified in a list giving an enumeration of JSON paths within the JSON object created by the SEPP. Wildcards may be used in specifying paths.

This policy shall be specific per roaming partner and per IPX provider that is used for the specific roaming partner.

The modification policy resides at the SEPP
For each roaming parter, the SEPP shall be able to store a policy for sending in addition to one for receiving.

A basic modification policy that shall be applied irrespective of the exchanged policy is that IEs requiring encryption shall not be inserted at a different location in the JSON object.

13.2.3.5
Provisioning of the policies in the SEPP

The SEPP shall contain an interface that the operator can use to manually configure the protection policies in the SEPP.

The SEPP shall be able to store and process the following policies for outgoing messages:

-
A generic data-type encryption policy;

-
Roaming partner specific data-type encryption policies that will take precedence over a generic data-type encryption policy if present;

-
One NF API Data-type placement mapping;

-
Multiple modification policies, to handle modifications that are specific per IPX provider and modification policies that are specific per IPX provider and roaming partner.

The SEPP shall also be able to store and process the following policies for incoming messages:

-
Roaming partner specific data-type encryption policies;

-
Roaming partner specific modification policies that specifies which fields can be modified by which IPX providers.
13.2.4
N32-f connection between SEPPs
13.2.4.1
General

The SEPP receives the HTTP/2 request/response messages from the Network Function. It performs the following actions on these messages before they are sent on the N32-f interface to the SEPP in the other PLMN:

a) It parses the incoming message and reformats it to produce the input to JWE (clause 13.2.4.3).

b) It applies JSON Web Encryption (JWE) [59] on the input created in a) to protect the reformatted message (clause 13.2.4.4).

c) It encapsulates the resulting JWE object into a HTTP/2 message (as the body of the message) and sends to the SEPP in the other PLMN over the N32-f interface.

The path between the two SEPPs may take them via the cIPX and pIPX nodes. These IPX nodes may modify messages as follows:

a) The IPX node recovers the unencrypted (cleartext) section of the HTTP message (in the JWE object), modifies it according to the modification policy, and calculates an "operations" JSON Patch object. It creates a temporary JSON object with "operations" and few other parameters for replay protection etc. (clause 13.2.4.5.1).

b) The temporary JSON object is input into JSON Web Signature (JWS) [45] to create a JWS object (clause 13.2.4.5.2).

c) The JWS object is appended to the received message and sent to the next hop.

The JWS objects generated by the two IPX providers form an auditable chain of modifications that are applied to the parsed message at the receiving end after verifying that the patches conform to the modification policy.

Encryption of IEs take place end to end between cSEPP and pSEPP.

13.2.4.2
Overall Message payload structure for message reformatting at SEPP

A HTTP message received from an internal Network Function is reformatted into two temporary JSON objects that will be intput to JWE:

a. The dataToIntegrityProtect containing information that is only integrity protected. It contains the following:

-
clearTextEncapsulationMessage – contains the complete original HTTP message, excluding parts which require encryption and, including the pseudo-header fields, HTTP headers and HTTP message body.
-
metadata – contains SEPP generated information i.e. authorizedIPX ID, Message ID and N32-f context Id.
b. The dataToIntegrityProtectAndCipher containing parts of original message that require both encryption and integrity protection.

[image: image3.emf]{���³dataToIntegrityProtect´���^������³clearTextEncapsulatedMsg´���^����������³Pseudo-Headers´���^ ����³Method´���^`� ����³Scheme´���^`���������³Authority´����`�����³Path´���^`��������������³Query&Fragment´���^`�� },����������³HTTP_Headers´���^����³Hdr1´��^`�����³Hdr2´�^³encBlockIdx´���` },����������³Payload´���^����³IE1´��^`� ����³IE2´��^³encBlockIdx´���`�����³IE3´��^`� ����³IE4´��^` } },������³metaData´���^���������³Message Id´���^`��³authorizedIPX Id´���^`�����������³N32-f Context Id´����� } }, ���³dataToIntProtectAndCipher´���> Hdr2, IE2] }

Figure 13.2.4.2-1 Example of JSON representation of a reformatted HTTP message
Editors Note: Reformatting of Multipart HTTP messages (with JSON + binary payload) to be aligned with CT4 once available.
13.2.4.3
Message reformatting in sending SEPP

13.2.4.3.1
dataToIntegrityProtect

13.2.4.3.1.1
clearTextEncapsulatedMessage

This is a JSON object that contains the non-encrypted portion of the original message and consists of the following objects:

1.a) Pseudo_Headers – the JSON object that includes all the Pseudo Headers in the message.

- For HTTP Request messages, the object contains entry each for the ":method", ":path", ":scheme" and ":authority" pseudo headers.

NOTE:
If the "path" pseudoheader contains multiple parts separated by a slash (/) or includes a query parameter (following a "?"), an array is used to represent :path, with one element per part of the path (i.e. per "directory"). This enables ciphering individual element of the path (e.g. if SUPI is passed).

- For HTTP Response messages, the object contains the ":status" pseudo header.

1.b) HTTP_Headers - All the headers of the request are put into a JSON object (map) called HTTP_Headers, with the header name as "key" and the header value as "value".

1.c) Payload – the JSON object that includes the content of the payload of the HTTP message. Each attribute or IE in the payload shall form a single entry in the Payload JSON object. If there is any attribute value that requires encryption, it shall be moved into the dataToIntegrityProtectAndCipher JSON object (clause 13.2.4.3.2), and the original value in this element shall be replaced by the index in the form {"encBlockIdx": <num>} where "num" is the index of the corresponding entry in the dataToIntegrityProtectAndCipher array.
13.2.4.3.1.2
metadata

The JSON object containing information added by the sending SEPP. It contains:

a) Message Id: Unique identifier (64 bit integer) representing a HTTP Request/Response transaction between two SEPPs.
b) authorizedIPX Id: string identifying the first hop IPX (cIPX or pIPX) that is authorized to update the message. This field shall always be present. When there is no IPX that’s authorized to update, the value of this field is set to "NULL".

c) N32-f Context Id: Unique identifier representing the N32-f context information used for protecting the message.
13.2.4.3.2
dataToIntegrityProtectAndCipher

The dataToIntegrityProtectAndCipher is a JSON array that contains all the attribute values that require both encryption and integrity protection. Attribute values can come from any part of the original HTTP message – Pseudo_Headers, HTTP_Headers and Payload.

The JSON array shall contain one array entry per attribute value that needs encryption. Each array entry represents the value of the attribute to be protected, and the index in the array is used to reference the protected value within the dataToIntegrityProtect block. This associates each attribute in the dataToIntegrityProtectAndCipher block with the original attribute in the dataToIntegrityProtect block. This is needed to reassemble the original message at the receiving SEPP.
13.2.4.4
Protection using JSON Web Encryption (JWE)

Protection of reformatted HTTP messages between SEPPs shall use JSON Web Encryption (JWE) as specified in IETF RFC 7516 [59]. All encryption methods supported by JWE are AEAD methods that encrypt, and integrity protect "plaintext" in one single operation and can additionally integrity protect additional data.

The dataToIntegrityProtectAndCipher and dataToIntegrityProtect blocks shall be input to JWE as plaintext and JWE Additional Authenticated Data (AAD) respectively. The JWE AEAD algorithm generates JWE encrypted text (ciphertext) and a JWE Authentication Tag (Message Authentication Code). The ciphertext is the output from symmetrically encrypting the plaintext, while the authentication tag is a value that verifies the integrity of both the generated ciphertext and the Additional Authenticated Data.

If the dataToIntegrityProtectAndCipher is not present in the rewritten HTTP message, the JWE plaintext shall be set to the string "NULL". The JWE AEAD algorithm will generate ciphertext and an authentication tag, but the ciphertext will not contain meaningful information.

The Flattened JWE JSON Serialization syntax shall be used to represent JWE as a JSON object.

The session key shared between the two SEPPs, as specified in clause 13.2.4.4.1, shall be used as the Content Encryption Key (CEK) value to the algorithm indicated in the Encryption algorithm ("enc") parameter in the JOSE header. The algorithm ("alg") parameter in the JOSE header denoting the key exchange method shall be set to "dir", i.e. "Direct use of a shared symmetric key as the CEK".

The 3GPP profile for supported cipher suites in the "enc" parameter is described in clause 13.2.4.9.

If AES GCM is used for AEAD the security considerations in 8.4 of [59] shall be taken into account. In particular, the same key shall not be used more than 232 times and an IV value shall not be used more than once with the same key.

The generated JWE object is transmitted on the N32-f interface in the payload body of a SEPP to SEPP HTTP/2 message.
13.2.4.4.1
N32-f key hierarchy

The N32-f key hierarchy is based on the N32-f master key generated during the N32-c initial handshake by TLS key export. Each run of the N32-f key derivation creates two pairs of session keys and IV salts. The two pairs are used in two different HTTP/2 sessions. In one Session the N32-c initiatior acts as the HTTP client and in the second the N32-c responder acts as the client.

If the exported master secret is reused to set up multiple HTTP sessions or to set up new HTTP sessions on stream ID exhaustion, a new, unique, Context ID shall be generated to avoid key and IV re-use.
The master key is obtained from the TLS exporter. The export function takes 3 arguments: Label, Context, Length (in octets) of desired output. For the N32 Master key derivation, the label shall be "EXPORTER_3GPP_N32_MASTER", the Context shall be "" (the empty string) and the Length shall be 64.

Editor’s Note: The exporter label for this usage should be registered with IANA

The N32 key derivation function N32-KDF is based on HKDF [62] and uses only the HKDF-Expand function as the initial key material has been generated securely:

N32-KDF (label, L) = HKDF-Expand (N32-f master key, "N32" || N32-Context-ID || label, L),

where

-
label is a string used for key separation,

-
L is the length of output keying material in octets.

There are two pairs of session keys and IV salts to be derived.

NOTE:
In AES-GCM re-use of one IV may reveal the integrity key (Joux’s Forbidden attack). The binding of session keys and IV salts to context IDs and different HTTP sessions is essential to protect against inadvertent use of the same key with a repeated IV.

The labels for the JWE keys are:

-
"parallel_request_key"
-
"parallel_response_key"
-
"reverse_request_key"
-
"reverse_response_key"
The keys derived with labels starting parallel are to be used for request/responses in an HTTP session with the N32-c initiating SEPP acting as the client (i.e. in parallel to the N32-c connection). The keys derived with the labels starting reverse are used for an HTTP session with the N32-c responding SEPP acting as the client.

To generate the IV salts, the length is 4 and the labels are:

-
"parallel_request_iv_salt"
-
"parallel_response_iv_salt"
-
"reverse_request_iv_salt"
-
"reverse_response_iv_salt"
The 96-bit nonce for AES_GCM shall be constructed as the concatenation of the IV salt (4 octets, 32-bits) and the sequence counter, SEQ, as defined in 8.2.1 of [63]. The sequence counter shall be a 64-bit unsigned integer that starts at zero and is incremented for each invocation of the encryption. A different sequence counter shall be maintained for each IV salt.

Nonce = IV salt | SEQ
13.2.4.5
Message modifications in IPX

13.2.4.5.1
modifiedDataToIntegrityProtect

[image: image4.emf]modifiedDataToIntegrityProtect = { ´Operations´���JSON Patch that captures IPX provider modifications, ´Identity´���´IPX1",���´Tag´���JWE Tag generated by sending SEPP}

Figure 13.2.4.5.1-1 Example of JSON representation of IPX provider modifications

This is a temporary JSON object generated by an IPX provider as it modifies the original message. It contains the following:

a)
Operations - This is a JSON string element that captures IPX modifications based on RFC 6902 [64]. If no patch is required, the operations element is set to NULL.
b)
Identity - This is the Identity of the IPX performing the modification.
c)
Tag – A JSON string element to capture the “tag” value (JWE Authentication tag) in the JWE object generated by the sending SEPP. This is required for replay protection.
NOTE:
Since there is no central registry that can ensure unique IPX Identities, it is expected that an IPX will include its Fully Quantified Domain Name (FQDN) in the JSON modification object.
13.2.4.5.2
Modifications by IPX

NOTE:
It is assumed that operators act as a certification authority for IPX providers they have a direct business relationship with. In order to authorize N32-f message modifications, operators sign a digital certificate for each of these IPX providers and provide it to both the IPX provider itself as well as their roaming partners to enable them to validate any modifications by this IPX provider.
Only cIPX and pIPX shall be able to modify messages between cSEPP and pSEPP. In cases of messages from cSEPP to pSEPP, the cIPX is the first intermediary, while the pIPX is the second intermediary. In cases of messages from pSEPP to cSEPP the pIPX is the first intermediary, while the cIPX is the second intermediary.

The first intermediary shall parse the encapsulated request (i.e. the clearTextEncapsulationMsg in the dataToIntegrityProtect block) and determine which changes are required. The first intermediary creates an “operations” JSON document to describe the differences between received and desired message, taking the syntax and semantic from RFC 6902 [64] (JSON patch), such that, when applying the JSON patch to the encapsulated request the result will be the desired request. If no patch is required, the operations element is NULL.
NOTE:
It is necessary to create a JWS object even if no patch is required to prevent deletion of modifications.

The first intermediary creates a modifiedDataToIntegrityProtect JSON object as described in clause 13.2.4.5.1. It includes its identity and the JWE authentication tag, which associates this update by the intermediary with the JWE object created by the sending SEPP.

The modifiedDataToIntegrityProtect JSON object is input to JWS to create a JWS object. The generated JWS object is appended to the payload in the HTTP message. The message is then sent to the next hop.
The second intermediary parses the encapsulated request, applies the modifications described in the JSON patch appended by the first intermediary and determines further modifications required for obtaining the desired request. These modifications are recorded in an additional JSON patch against the JSON object resulting after application of the first intermediary's JSON patch. If no patch is required, the operations element for the second JSON patch is NULL

The second intermediary creates a modifiedDataToIntegrityProtect JSON object as described in clause 13.2.4.5.1. It includes its identity and the JWE authentication tag, which associates this update by the second intermediary with the JWE object created by the sending SEPP.

The modifiedDataToIntegrityProtect JSON object is input to JWS to create a JWS object. The generated JWS object is appended to the payload in the HTTP message. The message is then sent to the receiving SEPP.
13.2.4.6
Protecting IPX modifications using JSON Web Signature (JWS)

Protection of IPX provider modified attributes shall use JSON Web Signature (JWS) as specified in IETF RFC 7515 [45]. The mechanism described in this clause uses signatures, i.e. asymmetric methods, with private/public key pairs.

When an IPX node modifies one or more attributes of the original HTTP message and creates a modifiedDataToIntegrityProtect to record its modifications, it shall use JWS to integrity protect the modifiedDataToIntegrityProtect object.

The private key of the IPX provider shall be used as input to JWS for generating the signature representing the contents of the patchRequest.
The "alg" parameter in the JOSE header indicates the chosen signature algorithm. The 3GPP profile for supported algorithms is described in clause 13.2.4.9.
The Flattened JWS JSON Serialization syntax shall be used to represent JWS as a JSON object.

13.2.4.7
Message verification by the receiving SEPP

The receiving SEPP shall decrypt the JWE ciphertext using the shared session key and the following parameters obtained from the JWE object – Initialization Vector, Additional Authenticated Data value (clearTextEncapsulatedMessage in “aad”) and JWE Authentication Tag (“tag”).

The content encryption algorithm checks the integrity and authenticity of the clearTextEncapsulatedMessage and the encrypted text by verifying the JWE Authentication Tag in the JWE object. The algorithm returns the decrypted plaintext (dataToIntegrityProtectAndCipher) only if the JWE Authentication Tag is correct.

The receiving SEPP refers to the NF API data-type placement mapping table to re-construct the original reformatted message by updating corresponding entries in clearTextEncapsulatedMessage with values in the dataToIntegrityProtectAndCipher array.

The receiving SEPP shall next verify IPX provider updates by verifying JWS signatures added by the intermediaries. For modifications by IPX provider that the receiving SEPP’s operator does not have a business relationship with, the SEPP shall verify the JWS signature, using the corresponding raw public key or certificate that is contained in the IPX provider’s security information list obtained as part of the N-32 security context setup. It then checks that the raw public key or certificate of the JWS signature IPX's Identity in the modifiedDataToIntegrity block matches to the IPX provider referred to in the "authorizedIPX Id" field added by the sending SEPP, based on the information given in the IPX provider security information list.

The receiving SEPP checks whether the modifications performed by the intermediaries were permitted by the respective modification policies. If this is the case, the receiving SEPP applies the patches in the “operations” field in order, performs plausibility checks, and creates a new HTTP request according to the "patched" clearTextEncapsulatedMessage.

13.2.4.8
Procedure

The following clause illustrates the message flow between the two SEPPs with modifications from cIPX and pIPX.

[image: image5.emf]cSEPPpSEPPpIPXcIPXcNFpNF1. HTTP Request2. Message rewriting and protection using JOSE3. Protected HTTPRequest4. Append cIPX modifications to the message5. Protected HTTP Requestw/IPX modification6. Append pIPX modifications to the message7. Protected HTTP Requestw/IPX modifications8. Verify integrity of clearText, encrypted textDecrypt encrypted Block Verify IPX updates in modificationsBlock and apply them.Reassemble the HTTP Request message.9. Modified HTTP Request10. HTTP Response11. Message rewriting and protection using JOSE12. Protected HTTPResponse13. Append pIPX modifications in the message14. Protected HTTP Responsew/IPX modification15. Append cIPX modifications in the message16. Protected HTTP Responsew/IPX modifications18. Modified HTTP Response17. Verify message.Reassemble the HTTP response.

Figure 13.2.4.8-1 Message flow between two SEPPs
1.
The cSEPP receives an HTTP request message from a network function.

2.
The cSEPP shall begin reformating the HTTP Request message

a. Generating blocks for integrity protected data and encrypted data, and protecting them:

The cSEPP encapsulates the HTTP request into a clearTextEncapsulatedMessage block containing the following child JSON objects:

-
Pseudo_Headers

-
HTTP_Headers with one element per header of the original request.

-
Payload that contains the message body of the original request.

For each attribute that requires e2e encryption between two SEPPs, the attribute value is copied into a dataToIntegrityProtectAndCipher JSON object and
the attribute’s value in the clearTextEncapsulatedMessage is replaced by the index of attribute value in the dataToIntegrityProtectAndCipher block.

A metadata block is created that contains the N32-f context Id, Message Id generated by SEPP for this request/response transaction and next hop identity.

The cSEPP protects dataToIntegrityProtect block and dataToIntegrityProtectAndCipher block as per clause 13.2.4.4. This results in a single JWE object representing the protected HTTP Request message.

b. Generating payload for the SEPP to SEPP HTTP message

The JWE/JWS becomes the payload of the new HTTP message generated by cSEPP.

3.
The cSEPP shall use HTTP POST to send the HTTP message to the first intermediary.

4.
The first intermediary (e.g. visited network's IPX provider) creates a new modifiedDataToIntegrityProtect JSON object with three elements:

a. The operations JSON element contains modifications performed by the first intermediary as per RFC 6902[64].

b. The intermediary includes its own identity in the Identity field of the patchRequest element.

c. The "tag" element, present in the JWE object generated by cSEPP, is copied into the modifiedDataToIntegrityProtect object. This acts as a replay protection for updates made by the first intermediary.

The intermediary executes JWS on the modifiedDataToIntegrityProtect JSON object and appends to the message.
5.
The first intermediary sends the modified HTTP message request to the second intermediary (home network's IPX) as in step 3.

6.
The second intermediary performs further modifications if required. The second intermediary executes JWS on the modifiedDataToIntegrityProtect JSON object and appends it to the message.
7.
The second intermediary sends the modified HTTP message to pSEPP as in step 3.

Note:
The behaviour of the intermediaries is not normative, but the hSEPP assumes that behaviour for processing the resulting request.

8.
The pSEPP receives the message and does the following:

-
It extracts the serialized values from the components of the JWE object.

-
Invokes JWE decrypt function to check the integrity of the message and decrypt the dataToIntegrityProtectAndCipher block. This results in entries in the encrypted block becoming visible in cleartext.

-
The pSEPP updates the clearTextEncapsulationMessage block in the message by replacing the references to the dataToIntegrityProtectAndCipher block with the referenced decrypted values from the dataToIntegrityProtectAndCipher block.
-
It then verifies IPX provider updates of the attributes in the modificationsArray. It checks whether the modifications performed by the intermediaries were permitted by policy.

-
The modified values of the attributes are updated in the clearTextEncapsulationMessage in order.
The pSEPP re-assembles the full HTTP Request from the contents of the clearTextEncapsulationMessage.
9.
The pSEPP shall send the HTTP request resulting from step 8 to the home network's NF.

10.-18.
These steps are analogous to steps 1.-9.

*** End of Changes ***

cSEPP

pSEPP

pIPX

cIPX

NF

NF

		Clear text IEs

		Encrypted IEs (JWE)

		Meta data

		JSON patch

		IPX Id

		JWS Signature

		JSON patch

		IPX Id

		JWS Signature

		Clear text IEs

		Encrypted IEs (JWE)

		Meta data

HTTP/2 Request

HTTP/2 Request

N32-c

N32-f

JWE

JWS

JWS

Public key

cIPX

Public key pIPX

JSON Patch modification(s)

JSON Patch modification(s)

Symmetric key A

Symmetric key A

Private key

cIPX

Private key

pIPX

_1596433550.vsd
{
 “dataToIntegrityProtect” : {
 “clearTextEncapsulatedMsg” : {
 “Pseudo-Headers” : {
 	 “Method” : {},
 	 “Scheme” : {},
	 “Authority” : (},
	 “Path” : {},
 “Query&Fragment” : {}
 },
 “HTTP_Headers” : {
	 “Hdr1”: {},
	 “Hdr2”:{“encBlockIdx”: 0}
 },
 “Payload” : {
	 “IE1” :{},
 	 “IE2” :{“encBlockIdx”: 1},
	 “IE3” :{},
 	 “IE4” :{}
 }
 },
 “metaData” : {
 “Message Id” : {},
	 “authorizedIPX Id” : {},
 “N32-f Context Id” : ()
 }
 },
 “dataToIntProtectAndCipher” : [
 Hdr2,
 IE2
]
}

_1596443114.vsd
modifiedDataToIntegrityProtect =
{
 ”Operations” : JSON Patch that captures 	IPX provider modifications,
 ”Identity” : ”IPX1",
 ”Tag” : JWE Tag generated by sending 	SEPP
}

N32-f context
N32-f context ID
N32-f peer information
N32-f security context
N32-f context information
Remote PLMN ID
Remote SEPP ID
Remote SEPP address
Session keys
Cipher-suites
Counters
Validity
Usage (ALS)
Modification policy IDs
User
IVs

_1595444995.vsd
pSEPP

pIPX

cSEPP

cIPX

cNF

pNF

1. HTTP Request

2. Message rewriting and protection using JOSE

3. Protected HTTP
Request

4. Append cIPX modifications to the message

5. Protected HTTP Request
w/IPX modification

6. Append pIPX modifications to the message

7. Protected HTTP Request
w/IPX modifications

8. Verify integrity of clearText, encrypted text
Decrypt encrypted Block
Verify IPX updates in modificationsBlock and apply them.
Reassemble the HTTP Request message.

9. Modified HTTP
Request

10. HTTP Response

11. Message rewriting and protection using JOSE

12. Protected HTTP
Response

13. Append pIPX modifications in the message

14. Protected HTTP Response
w/IPX modification

15. Append cIPX modifications in the message

16. Protected HTTP Response
w/IPX modifications

18. Modified HTTP Response

17. Verify message.
Reassemble the HTTP response.

